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Linearized spectrum correlation analysis for line
emission measurements
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A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge
exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast
spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is
designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave.
The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdi-
vides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations
without averaging over the fast time dynamics. In principle, small fluctuations in the parameters
used for a line shape model can be measured by evaluating the cross spectrum between different
channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measure-
ments (100–200 kHz) were made by using this method. We also conducted simulations to compare
LSCA with a moment analysis technique under a low photon count condition. Both experimental
and synthetic measurements demonstrate the effectiveness of LSCA. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4999450]

I. INTRODUCTION

The transport of particles and heat due to plasma tur-
bulence is a longstanding challenge for both experimental
measurements and theoretical modeling. Measurements of
micro-instabilities are especially challenging since they have
a physical scale comparable to the gyro-radius and therefore
tend to also be of high frequency. Much of the interesting
volume in hot plasmas is inaccessible to probe-based diagnos-
tics. This motivates measurements of micro-instabilities and
their effect on ion dynamics using diagnostics such as CHarge
Exchange Recombination Spectroscopy (CHERS) and pas-
sive Ion Doppler Spectroscopy (IDS). A major limiting factor
for time resolution in these techniques is the Poisson noise
that arises from the discrete nature of photons. The relative
uncertainty due to the Poisson noise scales as (∫

t+∆t
t Γdt ′)−1/2

in a photon detection system, where Γ and ∆t are the inci-
dent photon flux and signal integration time, respectively.
The Poisson noise can be reduced by increasing either Γ
or ∆t. Since ∆t determines the time resolution, diagnosti-
cians typically design high throughput spectrometers to opti-
mize Γ. For example, at DIII-D, a spectrometer with a high
light collection capability (étendue of 1.6 mm2 sr and grat-
ing transmission efficiency of ≈75%–85%) and a dedicated
light detection system are deployed for CHERS.1,2 This system
can collect a sufficient number of photons to fit an emis-
sion line to measure ion dynamics with a time resolution of
1 µs. The Ion-Doppler Spectrometer3 (IDS-II) at the Madison
Symmetric Torus4 (MST) with an étendue of 0.80 mm2sr and
transmission efficiency of 6% was also upgraded to measure
high-frequency fluctuations (<400 kHz) and has successfully
resolved 100 kHz C III emission fluctuations due to small scale

a)nishizawa@wisc.edu

fluctuations.5–7 However, even with the use of diagnostic sys-
tems with a high light collection capability, the Poisson noise
sets a noise floor in frequency power spectral density, which
is problematic especially at high frequencies where signal
amplitudes tend to be small.

In CHERS or IDS, ion dynamics are typically inferred
from impurity line emission using Moment Analysis8,9 (MA)
or line shape fitting.1,9–11 Moment analysis uses the zeroth
moment for the emission intensity, the first moment for the
line-of-sight velocity, and the second moment for the impurity
ion temperature, e.g., TI ∝

∑
Ij(λj − λ0)2/

∑
Ij where TI, I j,

λj, and λ0 are the impurity ion temperature, signal intensity,
wavelength of channel j, and mean wavelength of the emission
line, respectively. In MA, amplitudes of noise floors due to
the Poisson noise can be estimated analytically. For example,
the noise floor for the normalized intensity fluctuation power
spectrum is

Pf ,noise =
1

fNyquist
∑

j nj
, (1)

where f Nyquist is the Nyquist frequency and nj is the number
of photons detected in the spectral channel, j. The noise lev-
els for the velocity and temperature fluctuations are derived in
Ref. 9. In line shape fitting, the noise levels can be reduced
by adding a physics-based assumption such as a model for
the emission line shape to find the most probable values
for the fitting parameters.9 However, the Poisson noise still
limits the resolution of line emission measurements. Even
when the intensity fluctuations are resolved, the velocity or
temperature fluctuation level can be much smaller than the
noise level since the higher moments are more prone to noise
accumulation.

In this paper, we describe a new linearized spectrum corre-
lation analysis (LSCA) method that can isolate fast dynamics
of the emission spectrum in low-light conditions and thereby
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better expose the underlying plasma turbulence characteris-
tics. The LSCA method is motivated by trying to detect the
radial velocity fluctuations due to a stationary wave superim-
posed on a slowly evolving background in the C III impurity
emission data in MST plasmas.5 Neither line shape fitting nor
MA is able to resolve the fluctuations. The method’s basis in
correlation analysis allows greater noise rejection than that
is possible for MA or line shape fitting, which converge to
a certain noise floor even as the sample size increases. The
advantage of correlation analysis has already been demon-
strated in Correlation Electron Cyclotron Emission (CECE).
By correlating two distinct radiometer signals, electron tem-
perature fluctuations with amplitudes smaller than wave noise
can be measured.12,13 In analogy with CECE, LSCA rejects
the Poisson noise that is not correlated between the spectral
channels. The LSCA procedure is outlined by the following
steps:

1. Prepare an ensemble of time series with similar average
plasma conditions.

2. Use line shape fitting to determine the average line shape.
3. Subdivide spectral channels into two sets and sum the

signals in each set.
4. Calculate the cross spectrum of the two sets using

efficient FFT methods.
5. Iterate the cross spectrum calculation using different sets

of channels to isolate fluctuations in the parameters used
for a line shape model.

The technique assumes small fluctuations that are identified
by linearization around a line shape as discussed in Sec. II.
We apply LSCA to experimental data in Sec. III which
explains how to extract specific physical quantities by eval-
uating cross spectra. In Sec. IV, we compare LSCA and MA
using synthesized data.

II. LINEARIZING THE SPECTROMETER OUTPUT

In CHERS or IDS, a spectral channel output sj(t) is the
convolution of the spectral radiance R(λ, t) and its instrumen-
tal transfer function Hj(λ), where j is the spectral channel
index. In line emission measurements, R can be written as
follows:

R(λ, t)= I(t)G
(
λ, a1(t), a2(t), . . . , aN (t)

)
+ B(t), (2)

where I(t) is the intensity of the line emission, G is a nor-
malized line shape parametrized by ai, i= 1, . . . , N , and B
is the background emission. While LSCA can be used to
measure fluctuations in I and ai for any given line shape,
we restrict this paper to the case where R depends on the
Doppler shift, λd(t), and thermal broadening, σth(t). This
corresponds to a Maxwell-Boltzmann distribution, which
is the most probable ion distribution in magnetized fusion
plasmas.1,9–11

After subtracting the background contribution, sj is given
by

sj(t)= I(t)
∫ +∞

−∞

G
(
λ, λd(t),σ2

th(t)
)
Hj(λ)dλ + Xj(t), (3)

where X j is a noise term.
When fluctuations are small, and sj is a stationary random

process over the time t, Eq. (3) can be linearized with respect
to the quantities I, λd, and σ2

th around their time averages by
the Taylor expansion,

sj(t)≈ I0

∫ +∞

−∞

G
(
λ, λd,0,σ2

th,0
)
Hj(λ)dλ

+ Ĩ(t)
∫ +∞

−∞

G
(
λ, λd,0,σ2

th,0
)
Hj(λ)dλ

+ λ̃d(t)I0

∫ +∞

−∞

∂G
∂λd

(
λ, λd,0,σ2

th,0
)
Hj(λ)dλ

+ σ̃2
th(t)I0

∫ +∞

−∞

∂G

∂σ2
th

(
λ, λd,0,σ2

th,0
)
Hj(λ)dλ

+ Xj(t), (4)

where

I(t) = I0 + Ĩ(t),

λd(t) = λd,0 + λ̃d(t),

σ2
th(t) =σ2

th,0 + σ̃2
th(t),

(5)

and X j represents the signal contribution from uncorrelated
noise. See the Appendix for the details of the approxi-
mation assumptions. The magnitude of the coefficients for
each fluctuating term is different for different j as shown
in Fig. 1. When fluctuations are small, any change in the
emission line shape can be represented through the super-
position of these three patterns plus the noise term. It is
important to note that, while a specific parameterization of
the line shape defines the reference for linearization, LCSA
is not a line-fitting algorithm. For the specific case here,
any critical information in the underlying ion distribution
that arises from being non-Gaussian is maintained in the
data and ascribed to intensity, Doppler shift, and thermal
broadening.

We introduce two disjoint sets of the available spectral
channels, labeled A and B. We define sA(t) as the sum of signals

FIG. 1. Example of the linearized fluctuation patterns for the emission. The
intensity (a), Doppler shift (b), and thermal broadening (c) correspond to the
second, third, and fourth term on the right-hand side of Eq. (4). λj is the
wavelength of spectral channel j with respect to the peak of the emission
line.
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in set A, i.e.,

sA(t)≡ I0

∫ +∞

−∞

G
(
λ, λd,0,σ2

th,0
) ∑

j∈A

Hj(λ)dλ

+ Ĩ(t)
∫ +∞

−∞

G
(
λ, λd,0,σ2

th,0
) ∑

j∈A

Hj(λ)dλ

+ λ̃d(t)I0

∫ +∞

−∞

∂G
∂λd

(
λ, λd,0,σ2

th,0
) ∑

j∈A

Hj(λ)dλ

+ σ̃2
th(t)I0

∫ +∞

−∞

∂G

∂σ2
th

(
λ, λd,0,σ2

th,0
) ∑

j∈A

Hj(λ)dλ

+
∑
j∈A

Xj(t). (6)

Likewise sB(t) is defined as the sum of signals in set B.
By defining the units of H j in such a way that sj becomes

the effective photon counting rate,5 each channel contribution
to the sum is weighted properly to address different channel
sensitivities. The resulting noise term is also characterized by
the Poisson distribution.

We define the normalized fluctuating part of sA as ŝA(t)
≡ sA(t)/sA,0−1 where sA,0 is the time average of sA. We assume
that over the interval of the time average, the underlying wave
is stationary and it is long enough to make the noise terms
negligible. Under these conditions,

ŝA(t)=
Ĩ(t)
I0

+ kAλ̃d(t) + cT ,Aσ̃2
th(t) + xA, (7)

where

kA ≡
1

FA

∫ +∞

−∞

∂G
∂λd

∑
j∈A

Hj(λ)dλ,

cT ,A ≡
1

FA

∫ +∞

−∞

∂G

∂σ2
th

∑
j∈A

Hj(λ)dλ,

xA ≡
1

I0FA

∑
j∈A

Xj(t),

FA ≡

∫ +∞

−∞

G
(
λ, λd,0,σ2

th,0
) ∑

j∈A

Hj(λ)dλ.

(8)

We can calculate kA and cT ,A by fitting the time-averaged
emission line shape for set A. We similarly normalize sB(t)
and define ŝB(t) for set B. Since we can most easily distin-
guish the ion-scale fluctuations by their frequency, we will
cross-correlate the frequency spectra ŝA, f and ŝB, f , where

ŝA, f ≡
Ĩf

I0
+ kAλ̃d, f + cT ,Aσ̃2

th, f + xA, f , (9)

and likewise for set B. The subscript f indicates a frequency
Fourier transform using FFT methods. Since taking an ensem-
ble assumes that the data are sampled from a stationary ran-
dom process, we will assume that kA, kB, cT ,A, and cT ,B are
uncorrelated with any other quantities defined in Eq. (9).

We now have a method of generating cross spectra
〈ŝ∗A, f ŝB, f 〉 for any combination of channels A and B. By hav-
ing summed multiple channels, we increase the photon counts
that lead to a small relative noise of ŝA, f and ŝB, f . Furthermore,
there is no correlation between xA,f and xB ,f since we choose

the sets A and B so that they are disjoint, and we are assuming
that there is no noise that is correlated across the channels,
e.g., power supply fluctuations on the detectors. Therefore,
evaluating cross spectra allows us to reject uncorrelated noise,
and the contributions from xA,f and xB ,f are eliminated. The
sensitivity of ŝA, f to the Doppler shift and thermal broadening
fluctuations depends on kA and cT ,A, respectively, and can be
varied by choosing different channel groupings. For example,
when we choose spectral channels for A from the right side
of the peak, the red shift in the wavelength will increase sA as
shown in Fig. 1. From Fig. 1 and Eq. (8), we can see that kA

takes a large positive value and the sensitivity of ŝA, f to the
Doppler shift will increase.

In general, the cross correlation 〈ŝ∗A, f ŝB, f 〉 has nine terms
and isolating them by evaluating different groupings is chal-
lenging. However, we can select groupings so that 〈ŝ∗A, f ŝB, f 〉

is less sensitive to a specific type of fluctuation, e.g., velocity
versus temperature. There can also be cases where one fluctuat-
ing quantity is negligible compared to the others. For example,
when cT ,A and cT ,B are small, the contributions to 〈ŝ∗A, f ŝB, f 〉

from thermal broadening are ignorable.
When the conditions of the measurements and groupings

allow neglecting thermal broadening, 〈ŝ∗A, f ŝB, f 〉 has the form

〈
ŝ∗A, f ŝB, f

〉
≈

〈
|Ĩf |

2

I2
0

〉
+

〈���λ̃d, f
���
2
〉
〈kA〉 〈kB〉

+
������

〈
Ĩf

I0
λ̃
∗
d, f

〉������
〈kA + kB〉 cos φ

+ i
������

〈
Ĩf

I0
λ̃
∗
d, f

〉������
〈kA − kB〉 sin φ, (10)

where arg(〈Ĩf λ̃
∗
d, f 〉)= φ is the cross phase between the intensity

and Doppler-shift fluctuations. A phasor diagram depicting
each of the contributions of the terms on the right-hand side of
Eq. (10) is shown in Fig. 2. In this specific case, there are only
four terms that compose 〈ŝ∗A, f ŝB, f 〉 and isolating them becomes
somewhat easier by evaluating four different groupings to
which Eq. (10) is applicable.

A key limitation for this analysis method is set by the
uncertainties in 〈ŝ∗A, f ŝB, f 〉 that depend both on the number

FIG. 2. A phasor diagram that illustrates the components of Eq. (10). The
orange and purple arrows measure the power of the intensity and the Doppler
shift fluctuations, respectively. The red and blue arrows correspond to the
cross-correlated fluctuations between the intensity and Doppler shift fluc-
tuations. The Doppler shift fluctuation that is in-phase with the intensity
fluctuation is projected on the red arrow, while the component π/2 out-of-
phase is projected on the blue arrow. Since the Doppler shift is caused by the
velocity fluctuation, the red arrow represents the transport of I and the blue
arrow represents the circulation of I with no net flux.
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of samples in the ensemble and the coherence level of the
cross correlation.14 When the difference in 〈ŝ∗A, f ŝB, f 〉 for dif-
ferent groupings cannot be distinguished from uncertainties,
the contribution from each term cannot be separated. To keep
the uncertainties low, we need to add a sufficient number of
channels to achieve a high coherence. This requirement limits
the number of useful groupings.

It should also be noted that we are explicitly neglecting any
contributions from three-wave interactions. In analogy with
gas puff imaging,15,16 we are measuring modulated visible
emission from the plasma from which we infer the structure
of the turbulence. In this analysis, we assume that

�����

〈 Ĩ∗f
I0
λ̃d, f

〉 �����
�

�����

〈 Ĩ∗f
I0

∑
f ′ + f ′′ = f

Ĩf ′

I0
λ̃d, f ′′

〉 �����
, (11)

where the right-hand side of Eq. (11) corresponds to the three-
wave interaction. When Eq. (11) holds, the contribution from
ε Iε in Eq. (A5) is small. Thus, Eq. (10) is still a valid model
for the measured cross spectra even when the condition ε I� 1
discussed in the Appendix is weakly satisfied.

III. APPLICATIONS OF THE LINEARIZED SPECTRUM
CORRELATION ANALYSIS TO RADIAL VELOCITY
FLUCTUATION MEASUREMENTS

In this section, we apply LSCA to experimental data
for improved-confinement MST reversed field pinch plasmas
that have reduced-amplitude tearing instabilities.18,19 High
frequency density fluctuations (∼100 kHz) emerge in these
plasmas as seen by edge interferometry measurements.17 We
also observe fluctuations with k⊥ρs of 0.3–0.7 cm�1 in C III
464.7 nm emission using the viewing geometry shown in
Fig. 3. The line of sight is focused within the edge C III
emission shell. Gyrokinetic modeling suggests that these fluc-
tuations are density-gradient-driven trapped electron modes
(TEM).6,7

The part of the Doppler-shift fluctuations that are coher-
ent with the intensity fluctuations is determined by making
groupings that are insensitive to the thermal broadening fluc-
tuations. An ensemble by collecting time periods showed high

FIG. 3. Schematic of the toroidal cross section of the C III passive spec-
troscopy measurement. R represents a major radius of torus. The C III emission
shell (represented by the dashed blue line) has a significant overlap with the
region where the edge density gradient is steepest and where high-frequency
fluctuations (depicted as a red sine wave) were previously measured with
interferometry.17

frequency fluctuations from similar discharges and applied
LSCA. The measured fluctuations above 100 kHz are dom-
inated by the contribution from the emission shell at the focal
point since the fluctuations within the emission shell in the
unfocused portion of the line of sight should be averaged
out spatially. While fluctuations with a characteristic scale
comparable to or larger than the sampling volume are not
averaged out, their characteristic frequency should be lower
than the frequency of interest and can be separated in the fre-
quency domain. When calculating sA,0 and sB ,0, half of the DC
component comes from the unfocused region.

The measured ion temperature in the edge region where
the C III emission is localized is TI ≈ 50 eV, and the ion ther-
mal speed is vth ≈ 20 km/s. We estimate the (radial) velocity
fluctuation amplitude to be ∼1–2 km/s. Given previous mea-
surements of the ion temperature profile,18 the ion temperature
fluctuation is therefore expected to be T̃I/TI < 10%. Given
〈σth, 0〉= 31.4 pm and σH = 45.5 pm in Eq. (A4), the condi-
tions εd, ε th� 1 described in the Appendix are well satisfied.
The analysis discussed in Sec. II is applied to three differ-
ent channel groupings (I, II, and III) as shown in Fig. 4, and
calculated coefficients of fluctuation parameters are shown in
Table I using a single Gaussian for G.

The channel distribution of grouping I shown in Fig. 4(a)
is symmetric about the emission peak for each set and min-
imizes the contributions from the Doppler shift and thermal
broadening fluctuations. From Table I, we see that if the
velocity fluctuation spectrum is on the order of the thermal
speed (ṽr, f /vth, 0 = λ̃d, f /σth, 0), their contribution to ŝA, f and
ŝB, f would be less than one percent. The plasma has a modest
ion temperature gradient compared with that of electron den-
sity or C III impurity density. Therefore, |Ĩf /I0 | & |σ̃2

th,f/σ
2
th, 0 |

is a reasonable assumption implying that temperature fluc-
tuations would also contribute at most at the percent level.
These are rather extreme constraints and so we expect the
contributions from the velocity and temperature fluctuations
in grouping I to be much smaller than 1%. The resulting
cross spectrum in Fig. 4(d) has only a real component and
a strong coherency that peaks in the 100-200 kHz range.
The lack of an imaginary component is consistent with the
assumption that the contributions from velocity and temper-
ature fluctuations are negligible. Therefore we interpret the
cross spectrum for grouping I as the orange arrow shown Fig. 2,
where

〈ŝ∗A, f ŝB, f 〉I ≈

〈
|Ĩf |

2

I2
0

〉
. (12)

TABLE I. Ensemble averaged coefficients of small fluctuating parameters
defined in Eq. (8). The ensemble average of thermal broadening was used to
make the coefficients dimensionless for comparison.

Grouping I II III

〈kA〉

√
〈σ2

th, 0〉 5.65 × 10−4 −6.18 × 10−1 −8.92 × 10−1

〈kB〉

√
〈σ2

th, 0〉 −9.12 × 10−3 4.67 × 10−1 8.85 × 10−1

〈kA − kB〉

√
〈σ2

th, 0〉 9.72 × 10−3 −1.09 × 100 −1.78 × 100

〈cT ,A〉〈σ
2
th, 0〉 −3.41 × 10−2 −4.57 × 10−3 1.54 × 10−1

〈cT ,B〉〈σ
2
th, 0〉 −1.08 × 10−2 −3.47 × 10−2 2.07 × 10−1
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FIG. 4. Grouping of spectral channels [(a)-(c)], cross spectra [(d)-(f)], and coherence [(g)-(i)] between ŝA, f and ŝB, f for three different groupings. The gray
dashed lines for coherence plots are the significance levels. λj is the wavelength of spectral channel j with respect to 464.7 nm.

The integrated cross spectrum yields an rms value of
Ĩ/I0 = 0.21 for the whole spectrum and 0.14 for the 100-
200 kHz frequency range. Although I depends not only on
the C III density fluctuations but also on the electron density
and on the electron temperature fluctuations, the fluctuation
power spectrum for I is similar to that of the electron density
fluctuations measured by interferometry measurements sug-
gesting that the fluctuations of I capture the structure of the
turbulence, implying Eq. (11) is a reasonable assumption.

In grouping II in Fig. 4(b), the channels for set A are taken
from the left side of the emission peak, while the channels
for set B are from the right side. This grouping increases the
magnitude of 〈kA − kB〉 in Table I two orders of magnitude
and makes it explicitly negative, while the coefficients of the
thermal broadening terms remain small. Now if the velocity
fluctuations are a significant fraction of the ion thermal speed,
they contribute to the normalized signal spectrum at the same
order as the intensity fluctuations. We use Eq. (10) to interpret
the cross spectrum for grouping II as

〈ŝ∗A, f ŝB, f 〉II ≈

〈
|Ĩf |

2

I2
0

〉
+ 〈|λ̃d, f |

2〉〈kA〉II〈kB〉II

+
������

〈
Ĩf

I0
λ̃
∗
d, f

〉������
〈kA + kB〉II cos φ

+ i
������

〈
Ĩf

I0
λ̃
∗
d, f

〉������
〈kA − kB〉II sin φ. (13)

We find that the real part of the cross spectrum for group-
ing II in Fig. 4(e) is very similar to that of grouping I with a
similar strong coherency, but the imaginary part is now non-
negligible implying a significant contribution from the velocity
fluctuations in the fourth term of Eq. (13) depicted as the blue
arrow in the phasor diagram in Fig. 2.

For linear electrostatic fluctuations, radial velocity fluc-
tuations are coherent with and proportional to density fluc-
tuations when the electron response is adiabatic. They arise

from E × B flows that are π/2 out-of-phase with the density
fluctuations. If the observed intensity fluctuations arise from
linear electrostatic fluctuations, then these circulating flows
will appear as Doppler-shift fluctuations in the imaginary part
of the cross spectrum in grouping II with

Im
〈
ŝ∗A, f ŝB, f

〉
II√

Re
〈
ŝ∗A, f ŝB, f

〉
I

≈

����

〈
Ĩf

I0
λ̃∗d, f

〉����√〈
|Ĩf |

2

I2
0

〉 〈kA − kB〉II sin φ

≈ |〈λ̃d, f 〉|〈kA − kB〉II sin φ. (14)

Using Eq. (14) and the value for 〈kA − kB〉II shown in Table I,
the calculated corresponding velocity fluctuation spectrum is
shown in Fig. 5(b). The intensity spectrum calculated from
〈ŝ∗A, f ŝB, f 〉I is also shown in Fig. 5(a) for comparison. The
peak near 130 kHz seen in Fig. 5 is distinct from tear-
ing modes that peak below 30 kHz.20 Integrating the veloc-
ity fluctuation spectrum gives an rms-amplitude of 1 km/s
which is a lower bound on the total radial velocity fluctuation
amplitude.

For grouping III in Fig. 4(c), the magnitude of 〈kA − kB〉III

is larger than 〈kA − kB〉II. The imaginary part of 〈ŝ∗A, f ŝB, f 〉III

shown in Fig. 4(f) becomes comparable to the real part, but
the coherence level is noticeably reduced in Fig. 4(i) since a

FIG. 5. C III emission intensity fluctuation spectrum (a) and radial velocity
fluctuation spectrum (b) for a 380 kA improved-confinement plasma.
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smaller number of channels are added in grouping III. From
Table I, we also see that thermal broadening fluctuations could
contribute to 〈ŝ∗A, f ŝB, f 〉III and Eq. (10) may not be applicable.
Considering the size of the error bars, it is difficult to iso-
late thermal broadening fluctuations using grouping III. Other
groupings that have larger magnitudes for cT ,A and cT ,B and
smaller magnitudes of kA and kB show no sign of thermal
broadening fluctuations. Unfortunately, there are insufficient
data to quantify other quantities such as the in-phase part of the
radial velocity and temperature fluctuations. If we collect more
photons from the emission line or accumulate more statistics,
we can reduce the uncertainties and may be able to measure
other quantities of interest with precision.

IV. COMPARISON BETWEEN LINEARIZED
SPECTRUM CORRELATION ANALYSIS AND
MOMENT ANALYSIS USING SYNTHESIZED DATA

In order to compare the resolution available through
LSCA as opposed to MA, we run Monte Carlo simulations
and apply both analysis techniques to synthesized data cre-
ated from Eq. (3). The parameters used in the simulations
are shown in Table II. Poisson(N) returns a psuedorandom
sample drawn from the Poisson distribution function with the
expectation value of N. To measure velocity fluctuations using
LSCA, a cross spectrum needs to be divided by the square root
of the intensity fluctuation power as shown in Eq. (14). The
factor Poisson(50) adds coherent intensity fluctuations over
all frequencies and allows us to measure the frequency com-
ponents of velocity fluctuation at all frequencies. The noise
term X j is accounted for by sampling from a Poisson distri-
bution. After calculating the expected photon counts for each
time point, we determine sj by drawing a psuedorandom sam-
ple from the Poisson distribution with an expectation value of
the expected photon count. An example of synthesized data
points is shown in Fig. 6(a). We can see that the uncertainties
introduced by the Poisson noise lead to a significant deviation
from the true line shape. Line shape fitting techniques become
sensitive to the initial values of fit parameters and difficult to
implement. Figure 6(b) shows the time average of the synthe-
sized data over the FFT time window. The Poisson noise has
been reduced to an acceptable level, and kA and cT ,A in Eq. (9)
can be measured with precision.

TABLE II. Simulation parameters were chosen so that they give results com-
parable to the spectra shown in Fig. 5 with a sharp peak at f = 100 kHz. The
average photon counting rate is defined for the sum of all channels.

Quantity Value

I(t) ∝Poisson(50)
(
1 + 0.06 cos(2πft)

)
λ̃d(t) 0.62 cos(2πft − π/2) (pm)
H j Similar to Fig. 6 in Ref. 3

G
Single Gaussian for C III 464.7 nm

emission line TI = 51 eV
Average photon count rate 25 (photons/µs)
Sampling rate 1 MHz
Time points 200 000
Hamming window width 256 µs

FIG. 6. Example of synthesized data points (a) and data points averaged over
256 µs (b). The error bars are estimated assuming the Poisson statistics. The
data points without an error bar have zero photon counts. The wavelength
spacing between adjacent spectral channels is 24 pm.

FIG. 7. Intensity (a) and velocity (b) spectra. The velocity spectrum was
calculated from the Doppler shift.

The simulation results are shown in Fig. 7. We use Eq. (10)
for all groupings in LSCA since there are no temperature
fluctuations, and the contribution of the factor Poisson(50) to
Ĩ(t)/I0 which is not coherent with λ̃d is small compared with
that of cos(2πft) at 100 kHz. We can see that LSCA repro-
duces the input spectra for intensity and velocity fluctuations.
On the other hand, MA overestimates the intensity power spec-
tral density and shows no structure in the velocity fluctuation
spectrum at 100 kHz. By plugging the parameters of this sim-
ulation, f Nyquist = 500 kHz and

∑
j nj = 25 into Eq. (1), the

Poisson noise contribution to the intensity power spectral den-
sity is calculated to be Pf ,noise = 0.8 × 10−4 kH−1 which is
consistent with the difference between the MA spectrum and
the input spectrum in Fig. 7(a). As for the velocity fluctuation
spectra, the signal level is below the noise floor and cannot be
resolved in MA. In contrast to MA, the noise floors are reduced
t in LSCA. In the limit where the number of samples in the
ensemble goes to infinity, LSCA is able to reproduce the input
spectra completely.

V. SUMMARY

A new method which we call linearized spectrum cor-
relation analysis (LSCA) for passive and charge-exchange
impurity emission and an application of it are presented. LSCA
rejects uncorrelated noise by using a combination of ensem-
ble averaging and cross correlation to improve the resolution
of line emission measurements as the sample size increases.
Using LSCA, the fast radial impurity velocity fluctuations
(100–200 kHz) associated with ion-scale micro-instabilities
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are detected. When LSCA and MA are applied to the
synthesized data, LSCA provides better resolutions than MA.

SUPPLEMENTARY MATERIAL

See supplementary material for the digital format of the
data shown in this paper.
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APPENDIX: LINEARIZATION CRITERIA

Here we summarize the criteria for linearizing spectral
channel outputs. To simplify the discussion, we assume that the
normalized emission line and instrumental transfer function
are Gaussian,

G
(
λ, λd,σ2

th
)
=

1√
2πσ2

th

exp

−

(λ − λd)2

2σ2
th


, (A1)

Hj(λ)=
1√

2πσ2
H

exp

−

(λ − λj)2

2σ2
H


, (A2)

where σ2
H quantifies the spectral resolution, and λj is the cen-

tral location of a spectral channel measured with respect to
the unshifted emission line wavelength λ0. Using Eq. (3), the
output of the spectral channel j is

sj
(
I , λd,σ2

th
)
=

I√
2π(σ2

th + σ2
H)

exp

−

(λj − λd)2

2(σ2
th + σ2

H)


. (A3)

Here, the noise term is neglected. We introduce dimensionless
parameters based on the assumptions of Eq. (5),

ε I ≡
Ĩ
I0

, εd ≡
λ̃d√

σ2
th,0 + σ2

H

,

ε th ≡
σ̃2

th

σ2
th,0 + σ2

H

, δj ≡
λj − λd,0√
σ2

th,0 + σ2
H

.

(A4)

When εd, ε th� 1, δj needs to be on the order of unity in order
for sj to have a non-negligible amplitude compared with spec-
tral channel outputs near the emission peak. Therefore, when
the conditions εd, ε th� 1 are satisfied, we can expand sj in
terms of εd and ε th as follows:

sj =
I0e−

1
2 δ

2
j√

2π(σ2
th,0 + σ2

H)

×


1 + ε I + δjεd −

1 − δ2
j

2
ε th + O(ε Iε , ε2)


, (A5)

where ε = εd, ε th.

In general, H j is not necessarily Gaussian, but it is likely
centrally peaked with some characteristic width that can be
estimated by σH . With this approximation, if εd, ε th� 1, that
is, if the velocity fluctuations are much smaller than the ion
thermal speed and temperature fluctuations are much smaller
than the mean temperature, then Eq. (3) can be linearized
according to Eq. (4).
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